skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rahmani, Hazhar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies language-based opacity enforcement in a two-player, zero-sum game on a graph. In this game, player 1 (P1) wins if he can achieve a secret temporal goal described by the language of a finite automaton, no matter what strategy the opponent player 2 (P2) selects. In addition, P1 aims to win while making its goal opaque to a passive observer with imperfect information. However, P2 colludes with the observer to reveal P1's secret whenever P2 cannot prevent P1 from achieving its goal, and therefore, opacity must be enforced against P2. We show that a winning and opacity-enforcing strategy for P1 can be computed by reducing the problem to solving a reachability game augmented with the observer's belief states. Furthermore, if such a strategy does not exist, winning for P1 must entail the price of revealing his secret to the observer. We demonstrate our game-theoretic solution of opacity-enforcement control through a small illustrative example and in a robot motion planning problem. 
    more » « less
  2. This paper studies temporal planning in probabilistic environments, modeled as labeled Markov decision processes (MDPs), with user preferences over multiple temporal goals. Existing works reflect such preferences as a prioritized list of goals. This paper introduces a new specification language, termed prioritized qualitative choice linear temporal logic on finite traces, which augments linear temporal logic on finite traces with prioritized conjunction and ordered disjunction from prioritized qualitative choice logic. This language allows for succinctly specifying temporal objectives with corresponding preferences accomplishing each temporal task. The finite traces that describe the system's behaviors are ranked based on their dissatisfaction scores with respect to the formula. We propose a systematic translation from the new language to a weighted deterministic finite automaton. Utilizing this computational model, we formulate and solve a problem of computing an optimal policy that minimizes the expected score of dissatisfaction given user preferences. We demonstrate the efficacy and applicability of the logic and the algorithm on several case studies with detailed analyses for each. 
    more » « less
  3. In this paper, we study planning in stochastic systems, modeled as Markov decision processes (MDPs), with preferences over temporally extended goals. Prior work on temporal planning with preferences assumes that the user preferences form a total order, meaning that every pair of outcomes are comparable with each other. In this work, we consider the case where the preferences over possible outcomes are a partial order rather than a total order. We first introduce a variant of deterministic finite automaton, referred to as a preference DFA, for specifying the user's preferences over temporally extended goals. Based on the order theory, we translate the preference DFA to a preference relation over policies for probabilistic planning in a labeled MDP. In this treatment, a most preferred policy induces a weak-stochastic nondominated probability distribution over the finite paths in the MDP. The proposed planning algorithm hinges on the construction of a multi-objective MDP. We prove that a weak-stochastic nondominated policy given the preference specification is Pareto-optimal in the constructed multi-objective MDP, and vice versa. Throughout the paper, we employ a running example to demonstrate the proposed preference specification and solution approaches. We show the efficacy of our algorithm using the example with detailed analysis, and then discuss possible future directions. 
    more » « less
  4. Reduction of combinatorial filters involves compressing state representations that robots use. Such optimization arises in automating the construction of minimalist robots. But exact combinatorial filter reduction is an NP-complete problem and all current techniques are either inexact or formalized with exponentially many constraints. This paper proposes a new formalization needing only a polynomial number of constraints, and characterizes these constraints in three different forms: nonlinear, linear, and conjunctive normal form. Empirical results show that constraints in conjunctive normal form capture the problem most effectively, leading to a method that outperforms the others. Further examination indicates that a substantial proportion of constraints remain inactive during iterative filter reduction. To leverage this observation, we introduce just-in-time generation of such constraints, which yields improvements in efficiency and has the potential to minimize large filters. 
    more » « less
  5. We consider a robot tasked with observing its environment and later selectively summarizing what it saw as a vivid, structured narrative. The robot interacts with an uncertain environment, modelled as a stochastic process, and must decide what events to pay attention to (substance), and how to best make its recording (style) for later compilation of its summary. If carrying a video camera, for example, it must decide where to be, what to aim the camera at, and which stylistic selections, like the focus and level of zoom, are most suitable. This paper examines planning algorithms that help the robot predict events that (1) will likely occur; (2) would be useful in telling a tale; and (3) may be hewed to cohere stylistically. The third factor, a time-extended requirement, is entirely neglected in earlier, simpler work. With formulations based on underlying Markov Decision Processes, we compare two algorithms: a monolithic planner that jointly plans over events and style pairs and a decoupled approach that prescribes style conditioned on events. The decoupled approach is seen to be effective and much faster to compute, suggesting that computational expediency justifies the separation of substance from style. Finally, we also report on our hardware implementation. 
    more » « less